
LESS Lab, University of Virginia

Measuring and Mitigating Gaps
in Structural Testing

Soneya Binta Hossain, Matthew Dwyer, Sebastian Elbaum, Anh Nguyen-Tuong

1

Code Coverage

Apache Commons CSV

3

FasterXML/jackson-dataformat-xml

4

Based on statement coverage CSV seems to be better
tested than jackson-dataformat.

5

Would we say the same thing if we considered the
quality of the test oracles in addition to coverage?

Code Coverage, Test Oracle and Fault-detection

❖ Code coverage is essential

but insufficient

6

Code Coverage, Test Oracle and Fault-detection

❖ Code coverage is essential but

insufficient

❖ Test oracles and fault-

detection are strongly

correlated

7

Coverage Based on Test Oracles

❖ Considers program execution

and test oracles
○ Support statement criterion

○ Only assess test suite

8

❖ We build on Checked Coverage

by Schuler and Zeller
○ We support stronger criterion

○ We introduce and study the concept of

Coverage Gap

Focus of Our Paper

❖ Measuring the gap between code that is executed and code that is checked

by test oracles – we call this the coverage gap

❖ Evaluating the impact of the coverage gap on fault-detection

❖ Mitigating coverage gaps by enhancing test suites to achieve better fault

detection

9

public class Triangle {

int s1, s2, s3, p, color;
Triangle(int a1, int a2, int a3, int c) {

1: s1 = a1;
2: s2 = a2;
3: s3 = a2;
4: color = c;
5: setPerimeter();

}

private void setPerimeter() {
6: p = s1 + s2 + s3;

}

public int getPerimeter() {
7: return p;

}

public int getColor() {
8: return color;

}
} 10

@Test
public void testColor() {

Triangle t = new Triangle(2,3,2,1);
t.getPerimeter();
assertEquals(1, t.getColor());

}

E E∩C

1:

2:

3:

4:

5:

6:

7:

8:

G

Covered: 100%
Checked: 25%
In Gap: 75%

Measuring
Gaps

11

Mitigating Gaps

field write: s1, s2, s3

field read: s1, s2, s3
write: p

field read: p

Recommendation

getPerimeter()

public class Triangle {

int s1, s2, s3, p, color;
Triangle(int a1, int a2, int a3, int c) {

1: s1 = a1;
2: s2 = a2;
3: s3 = a2;
4: color = c;
5: setPerimeter();

}

private void setPerimeter() {
6: p = s1 + s2 + s3;

}

public int getPerimeter() {
7: return p;

}

public int getColor() {
8: return color;

}
}

@Test
public void testColor() {

Triangle t = new Triangle(2,3,2,1);
assertEquals(1, t.getColor());
assertEquals(7,t.getPerimeter());

}

Evaluation: Artifacts

12

❖ 13 Java Applications
❖ 16K tests
❖ 51.6K test assertions

Research Questions

❖ RQ1: Gaps in studied artifacts

❖ RQ2: Impact of gaps on fault detection

❖ RQ3: Recommender performance

❖ RQ4: Recommended assertions and fault detection effectiveness

13

Finding: Gaps range from 19-51 percentage points (pp), with an average of 35pp

Finding: Fault detection improved as much as 57pp and on avg. 13pp

Study Design:

❖ Generate 180 test suites by manipulating the gap size

❖ Generated 96K mutants to evaluate fault detection effectiveness

❖ Measure the correlation between gaps and kill scores

14

RQ2: Impact of Gaps on Fault Detection

15

RQ2: Impact of Gaps on Fault Detection

Statement Coverage Gap (pp)

K
ill

 S
co

re
 (

%
)

Granularity: Application, Package
Criteria: Statement, Object branch

RQ2: Impact of Gaps on Fault Detection

Findings: Faults can hide in the coverage gap and there is a strong

negative and statistically-significant correlation between gap size and

fault-detection effectiveness.

16

RQ3: Recommender Performance

Study design:

❖ Remove developer written assertions from test suites

❖ Compute the resulting gap

❖ Analyze the SUT and the gap to recommend focus methods

❖ Compare recommended focus methods to focus methods in removed

assertions

17

18

RQ3: Recommender Performance

RQ3: Recommender Performance

Finding: On average, 67% of the focus methods in the original test suites are
suggested within the top-5 recommendations. Restricting to the top-1
recommendation, nearly half of the developer-written focus methods are
present.

20

In summary:
• Traditional coverage can mislead.
• Gaps better reflect the under-tested codes.

 Moving forward:
• Scale forms of assertion-based coverage.
• Leverage gaps for test suite improvement.

Artifact: https://github.com/soneyahossain/hcc-gap-recommender

Acknowledgement: DARPA ARCOS FA8750-20-C-0507, Air Force Office of Scientific Research FA9550-21-
0164, and Lockheed Martin Advanced Technology Laboratories

https://github.com/soneyahossain/hcc-gap-recommender

	Slide 1: Measuring and Mitigating Gaps in Structural Testing
	Slide 2: Code Coverage
	Slide 3: Apache Commons CSV
	Slide 4: FasterXML/jackson-dataformat-xml
	Slide 5
	Slide 6: Code Coverage, Test Oracle and Fault-detection
	Slide 7: Code Coverage, Test Oracle and Fault-detection
	Slide 8: Coverage Based on Test Oracles
	Slide 9: Focus of Our Paper
	Slide 10
	Slide 11: Mitigating Gaps
	Slide 12: Evaluation: Artifacts
	Slide 13: Research Questions
	Slide 14: RQ2: Impact of Gaps on Fault Detection
	Slide 15: RQ2: Impact of Gaps on Fault Detection
	Slide 16: RQ2: Impact of Gaps on Fault Detection
	Slide 17: RQ3: Recommender Performance
	Slide 18: RQ3: Recommender Performance
	Slide 19: RQ3: Recommender Performance
	Slide 20

