Neural-Based Test Oracle Generation:
A Large-Scale Evaluation and Lessons Learned

Sonevya Binta Hossain (UVA)
Antonio Filieri (AWS)
Matthew Dwyer (UVA)

Sebastian Elbaum (UVA)
Willem Visser (AWS)

>
S2LESS LB aw$7

Pass

/ Oracle\ Fail
Test + A bug is detected

Input - Incorrect oracle (FP)

Automated test oracle generation, while advancing,
still faces significant challenges

EvoSuite

An automated unit test generation method for Java
Produces test inputs to achieve high code coverage

Suggests assertion or exception oracles based on observed behavior

Test Prefix

Test Prefix + Assertion Oracle

public void test@0() throws Throwable {
Stack<Integer> s@ = new Stack<Integer>();
Integer int® = new Integer(9);
s@.push(into);
assertEquals(1l, s@.size());

Test Prefix + Exception Oracle

public void testl1() throws Throwable { :
Stack<Integer> s@ = new Stack<Integer>(); :
try { i
s@.pop(); :
fail(); |

} catch(EmptyStackException e) { !
verifyException("Stack", e); !

Learning-based Method

- Learns from large-scale training data

- Understands both code and natural language document
- Detects bugs in the current program version

TOGA [1], a state-of-the-art method for test oracle generation

Input —
—* EOC

0

—
AOG

Exception
Oracle
— .
AOR | Assertion
Oracle

1. Elizabeth Dinella et al. (2022). TOGA: Neural Method for Test Oracle Generation. ICSE 22, ACM, pp. 2130-2141.

https://doi.org/10.1145/3510003.3510141

Example of Learning-based Oracles

Prefix With A ti |
Test Prefix Test Prefix Wi ssertion Oracle

public void test@3() throws Throwable {
Stack<Object> s@ = new Stack<Object>();

public void test@3() throws Throwable { | i !
! 1 . 1
: ' boolean b = s@.isEmpty(); i

1 |

Stack<Object> s@ = new Stack<Object>();

boolean b0 = s@.isEmpty(); assertTrue(bo)

public void test@5() throws Throwable {

public void test@5() throws Throwable { Stack<Object> s@ = new Stack<Object>();

' I

 Stack<Object> s@ = new Stack<Object>(); i try {

. s@.peek(); : se.peek();
! |

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ } catch (Exception e){
verifyException("Stack", e);

} | fail();

Overview

- Validating prior results
- revealed several issues with the original study setup

- Investigating precision
- revealed a very high false positive rates

- Investigating bug detection effectiveness

- revealed limited bug detection effectiveness

Validating Prior Results, Findings and Lesson

TOGA Defects4J Study

Original Study:

- Generated test cases on fixed programs Our Findings:

- Considered bug reaching tests (tests that fail on

_ ") Confirmed original results
the buggy version)

- Generated oracles for the bug reaching prefixes Most bugs (67%) were detected by

implicit oracles when executing

- Abugis detected if a test passed fixed version EvoSuite test prefixes

and failed on the buggy version

- Detected 57 bugs, outperforming other methods
(Randoop, seq2seq, JDoctor, AthenaTest)

TOGA Defects4J Study

Original Study:

Generated test cases on fixed programs Our Findings:

fa) 2l P I P aalaa o Lo o bm bt £ 21

Implicit oracles should be used as a baseline to report fault-
detection improvement

- Detected 57 bugs, outperforming other methods
(Randoop, seq2seq, JDoctor, AthenaTest)

Precision Study, Findings and Lesson

Precision of Learning-based Method

Study Setup:

Prepared a large-scale dataset from 25 Java applications, consisting of 223.5K
test cases

- Generated ground truth oracles using EvoSuite
- Prepared inputs for TOGA to generate oracle

- Ran theintegrated tests for validation

11

Our Findings

Total Prefix: 223,557

/\

Assert Prefix:
90%

—

Incorrect Class: Correct Class:
18.3% 81.7%

10%

Exception Prefix:

o

/

No Assertion:
62%

False Positive
81%

i

Assertion:
38%

AN

False Positive:

™~

True Positive
19%

47%

True Positive:
53%

Our Findings

Total Prefix: 223,557

o T~

90%

Assert Prefix:

T

Incorrect Class:
18.3%

Correct Class:
81.7%

T~

No Assertion:
62%

10%

Exception Prefix:

i

False Positive
81%

Assertion:
38%

-

False Positive:
47%

.

.

True Positive
19%

True Positive:
53%

Our Findings

Total Prefix: 223,557

— .

Assert Prefix:

90%
Incorrect Class: Correct Class:
18.3% 81.7%

.

No Assertion:
62%

10%

Exception Prefix:

o

False Positive
81%

Assertion:
38%

AN

False Positive:

47%

.

True Positive
19%

True Positive:
53%

Our Findings

Total Prefix: 223,557

— .

Assert Prefix:

Exception Prefix:

.

True Positive
19%

90% 10%
Incorrect Class: Correct Class: False Positive
18.3% 81.7% 81%
Assertion Type | FPR / \
No Assertion: Assertion:
assertTrue 56% 62% 38%
assertFalse 34.7% / \
assertNotNull | 9.9%) False Positive: True Positive:
assertEquals | 74% 47% >3%

Our Findings

Total Prefix: 223,557

/\

Assert Prefix: Exception Prefix:
90% 10%

Precision should be a central metric for a realistic assessment

Assertion Type | FPR - I

No Assertion: Assertion:
assertTrue 56% 62% 38%
assertFalse 34.7% / \
assertNotNull 19.9% | False Positive: True Positive:
assertEquals | 74% 47% 23%

Bug Detection Study, Findings and Lesson

Bug Detection Effectiveness of Learning-based Method

Study Setup:
- Considered only true positive assertions

- Prepared three test suites with identical prefixes but with different type of
assertions: implicit assertions, EvoSuite assertions, learning-based assertions

- Generated 51K mutated programs and ran different test suites to detect them

- Compared and analyzed relative bug detection effectiveness

18

Findings

Total Total Mutant Detected by
Tests Mutants
Implicit EvoSuite EvoSuite TOGA TOGA
Oracle (#) | Assertion (#) | Unique (#) | Assertion (#) | Unique(#)
34,378 51,385 20,597 9,814 (19%) 3,026 6,893 105 (0.2%)
(40%) (5.9%) (13.4%)

Findings

Total Total Mutant Detected by
Tests Mutants
Implicit EvoSuite EvoSuite TOGA TOGA
Oracle (#) ||Assertion (#) | Unique (#) || Assertion (#) || Unique(#)
34,378 51,385 20,597 9,814 (19%) 3,026 6,893 105 (0.2%)
(40%) (5.9%) (13.4%)

Findings

Total Total Mutant Detected by
Tests Mutants
Implicit EvoSuite EvoSuite TOGA TOGA
Oracle (#) | Assertion (#) || Unique (#) | Assertion (#) || Unique(#)
34,378 51,385 20,597 9,814 (19%) 3,026 6,893 105 (0.2%)
(40%) (5.9%) (13.4%)

mutation testing

To avoid bias, a more realistic evaluation should use

In Summary ...

Finding - 1: 67% of the Defects4J bugs can be detected by implicit oracles
Lesson - 1: Implicit oracles should be used as the baseline

Finding - 2: SOTA learning-based method has a very high false positives rate
Lesson - 2: Precision should be a central evaluation metric for a realistic assessment

Finding - 3: SOTA learning-based method has limited unique bug detection capability
Lesson - 3: To avoid bias, a more realistic evaluation should use mutation testing

Neural-Based Test Oracle Generation:
A Large-Scale Evaluation and Lessons Learned

Artifact: https://doi.org/10.6084/m9.figshare.21973091.v4

Acknowledgement: AWS and DARPA ARCOS FA8750-20-C-0507, Air Force Office of
Scientific Research FA9550-21-0164, and Lockheed Martin Advanced Technology
Laboratories

23

