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EvoSuite
- An automated unit test generation method for Java
- Produces test inputs to achieve high code coverage 
- Suggests assertion or exception oracles based on observed behavior

public void test00() throws Throwable {
Stack<Integer> s0 = new Stack<Integer>();
Integer int0 = new Integer(0);
s0.push(int0);
assertEquals(1, s0.size());

}

public void test11() throws Throwable {
Stack<Integer> s0 = new Stack<Integer>();
try {

s0.pop();
fail(); 

} catch(EmptyStackException e) {
verifyException("Stack", e);

}
}

Test Prefix + Assertion Oracle

Test Prefix + Exception Oracle
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Learning-based Method
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TOGA [1], a state-of-the-art method for test oracle generation

1. Elizabeth Dinella et al. (2022). TOGA: Neural Method for Test Oracle Generation. ICSE '22, ACM, pp. 2130–2141. 
https://doi.org/10.1145/3510003.3510141
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- Learns from large-scale training data
- Understands both code and natural language document
- Detects bugs in the current program version



Example of Learning-based Oracles

public void test03() throws Throwable {
Stack<Object> s0 = new Stack<Object>();
boolean b0 = s0.isEmpty();

}

public void test05() throws Throwable {
Stack<Object> s0 = new Stack<Object>();
s0.peek();

}

public void test03() throws Throwable {
Stack<Object> s0 = new Stack<Object>();
boolean b0 = s0.isEmpty();
assertTrue(b0)

}

public void test05() throws Throwable {
Stack<Object> s0 = new Stack<Object>();

try {
s0.peek();
fail();

} catch (Exception e){
verifyException("Stack", e);

}
}

Test Prefix

Test Prefix

Test Prefix With Assertion Oracle

Test Prefix With Exception Oracle
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Overview

- Validating prior results

- Investigating precision

- Investigating bug detection effectiveness

- revealed several issues with the original study setup

- revealed a very high false positive rates

- revealed limited bug detection effectiveness
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Validating Prior Results, Findings and Lesson
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TOGA Defects4J Study

Original Study:

- Generated test cases on fixed programs

- Considered bug reaching tests (tests that fail on 
the buggy version)

- Generated oracles for the bug reaching prefixes

- A bug is detected if a test passed fixed version 
and failed on the buggy version

- Detected 57 bugs, outperforming other methods 
(Randoop, seq2seq, JDoctor, AthenaTest)

Our Findings:

- Confirmed original results

- Most bugs (67%) were detected by 
implicit oracles when executing 
EvoSuite test prefixes
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TOGA Defects4J Study

Original Study:

- Generated test cases on fixed programs

- Considered bug reaching tests (tests that fail on 
the buggy version)

- Generated oracles for the bug reaching prefixes

- A bug is detected if a test passed fixed version 
and failed on the buggy version

- Detected 57 bugs, outperforming other methods 
(Randoop, seq2seq, JDoctor, AthenaTest)

Our Findings:

- Confirmed original results

- Most bugs (67%) were detected by 
implicit oracles when executing 
EvoSuite test prefixes

Implicit oracles should be used as a baseline to report fault-
detection improvement
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Precision Study, Findings and Lesson
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Precision of Learning-based Method

Study Setup:

- Prepared a large-scale dataset from 25 Java applications, consisting of 223.5K 
test cases

- Generated ground truth oracles using EvoSuite

- Prepared inputs for TOGA to generate oracle

- Ran the integrated tests for validation
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Our Findings
Total Prefix: 223,557

Assert Prefix:
90% 

Exception Prefix:
10%

Incorrect Class:
18.3%
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False Positive 
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47%

True Positive:
53% 12
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Bug Detection Study, Findings and Lesson
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Bug Detection Effectiveness of Learning-based Method

Study Setup:

- Considered only true positive assertions

- Prepared three test suites with identical prefixes but with different type of 
assertions: implicit assertions, EvoSuite assertions, learning-based assertions

- Generated 51K mutated programs and ran different test suites to detect them

- Compared and analyzed relative bug detection effectiveness
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Findings

Total 
Tests

Total 
Mutants

Mutant Detected by

Implicit
Oracle (#)

EvoSuite
Assertion (#)

EvoSuite
Unique (#)

TOGA
Assertion (#)

TOGA
Unique(#)

34,378 51,385 20,597 
(40%)

9,814 (19%) 3,026 
(5.9%)

6,893 
(13.4%)

105 (0.2%)
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To avoid bias, a more realistic evaluation should use 
mutation testing
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In Summary ...

Finding - 1: 67% of the Defects4J bugs can be detected by implicit oracles
Lesson - 1: Implicit oracles should be used as the baseline

Finding – 2: SOTA learning-based method has a very high false positives rate
Lesson – 2: Precision should be a central evaluation metric for a realistic assessment

Finding - 3: SOTA learning-based method has limited unique bug detection capability
Lesson - 3: To avoid bias, a more realistic evaluation should use mutation testing
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Artifact: https://doi.org/10.6084/m9.figshare.21973091.v4
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